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Fitting

• Choose a parametric object/some objects to represent a set 
of tokens

• Most interesting case is when criterion is not local
• can’t tell whether a set of points lies on a line by looking only at each point 

and the next.

• Three main questions:
• what object represents this set of tokens best?
• which of several objects gets which token?
• how many objects are there?

(you could read line for object here, or circle, or ellipse or...)



Scenes as stages

Hedau et al, in review



The “stage”
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The “players”
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Stage and Players



Now, what can we do...

• Free space estimate
• using standard SFM construction for camera given manhattan world
• couple appearance model of objects to approximate geometric models?

Hedau et al, in review



• Purports to answer all three questions
• in practice, answer isn’t usually all that much help

• We do for lines only
• A line is the set of points (x, y) such that

• Different choices of θ, d>0 give different lines
• For any (x, y) there is a one parameter family of lines through this 

point, given by

• Each point gets to vote for each line in the family; if there is a line that 
has lots of votes, that should be the line passing through the points

Fitting and the Hough Transform

€ 

sinθ( )x + cosθ( )y + d = 0

€ 

sinθ( )x + cosθ( )y + d = 0



tokens votes



Mechanics of the Hough transform

• Construct an array representing θ, d
• For each point, render the curve (θ, d) into this array, 

adding one at each cell
• Difficulties
• how big should the cells be? (too big, and we cannot distinguish between 

quite different lines; too small, and noise causes lines to be missed) 
• How many lines?
• count the peaks in the Hough array

•  Who belongs to which line?
• tag the votes

• Hardly ever satisfactory in practice, because problems 
with noise and cell size defeat it



tokens votes









Line fitting can be max.
likelihood - but choice of

model is important



Who came from which line?

• Assume we know how many lines there are - but which 
lines are they?
• easy, if we know who came  from which line

• Three strategies
• Incremental line fitting
• K-means
• Probabilistic (later!)







Robustness

• As we have seen, squared error can be a source of bias in 
the presence of noise points
• One fix is EM  -  we’ll do this shortly
• Another is an M-estimator
• Square nearby, threshold far away

• A third is RANSAC
• Search for good points











RANSAC

• Algorithm
• Choose a small subset uniformly at random
• Fit to that
• Anything that is close to result is signal; all  others are noise
• Refit
• Do this many times and choose the best

• Issues
•  How many times?
• Often enough that we are likely to have a good line

• How big a subset?
• Smallest possible

• What does close mean?
•  Depends on the problem

• What is a good line?
•  The number of nearby points is so big it is unlikely to be all outliers





Fitting curves other than lines

• In principle, an easy generalisation
• The probability of obtaining a point, given a curve, is given by a negative 

exponential of distance squared

•  In practice, rather hard
•  It is generally difficult to compute the distance between a point and a 

curve



Missing variable problems

• In many vision problems, if some variables were known 
the maximum likelihood inference problem would be easy
• fitting; if we knew which line each token came from, it would be easy to 

determine line parameters
• segmentation; if we knew the segment each pixel came from, it would be 

easy to determine the segment parameters
• fundamental matrix estimation; if we knew which feature corresponded to 

which, it would be easy to determine the fundamental matrix
• etc.

• This sort of thing happens in statistics, too



Missing variable problems

• Strategy
• estimate appropriate values for the missing variables
• plug these in, now estimate parameters
• re-estimate appropriate values for missing variables, continue

• eg
• guess which line gets which point
• now fit the lines
• now reallocate points to lines, using our knowledge of the lines
• now refit, etc.

• We’ve seen this line of thought before (k means)



Missing variables - strategy

• We have a problem with parameters, missing variables
• This suggests:
• Iterate until convergence
• replace missing variable with expected values, given fixed values of 

parameters
• fix missing variables, choose  parameters to maximise likelihood given 

fixed values of missing variable

• e.g., iterate till convergence
• allocate each point to a line with a weight, which is the probability of the 

point given the line
• refit lines to the weighted set of points
•  Converges to local extremum
•  Somewhat more general form is available



€ 

P point | line and noise params( ) = P point | line( )P comes from line( ) +

P point | noise( )P comes from noise( )
= P point | line( )λ + P point | noise( )(1− λ)

Lines and robustness

• We have one line, and n points
• Some come from the line, some from “noise”
• This is a mixture model:

• We wish to determine
•  line parameters
• p(comes from line) 



Complete data

• Introduce a set of hidden variables, 
• δ, one for each point.  
• They are one when the point is on the line, and zero when off.

• If these were known, we would have: 

log P (xi, yi, δi|φ, c) =
[[

δi
xi cos φ + yi sinφ + c

2σ2
+ (1− δi)kn

]
+ K + log P (δi)

]



The complete data log-likelihood

• Log-likelihood if delta’s were known
• quite easy to work with

L(θ;x, δ) =
∑

i

log P (xi, yi, δi|φ, c)

=
∑

i

[[
δi

xi cos φ + yi sinφ + c

2σ2
+ (1− δi)kn

]
+ K + log P (δi)

]

θ = (φ, c, P (δi = 1))
= (φ, c,π)



But we don’t know delta

• Solution:  
• Iterate
• estimate delta’s with fixed parameters
• estimate parameters with new estimates of delta

• Formally
• obtain a starting theta
• now at each step, maximize

Q(θ; θ(n)) =
∫

L(θ;x, δ)P (δ|x, θ(n))dδ



Substituting for delta

• Notice:
• points close to current line means P(delta=1|x, theta) will be big
• far -> small
• like k-means but now we are averaging
• sometimes called soft assignment

P (δi = 1|x, θ(n)) = P (δi = 1|xi, θ
(n))

=
P (xi, δi = 1|θ(n))

P (xi|θ(n))

=
P (xi, |δi = 1, θ(n))P (δi = 1)

P (xi|δi = 1, θ(n))P (δi = 1) + P (xi|δi = 0, θ(n))P (δi = 0)



 

€ 

θ 0( ) = φ 0( ),c 0( ) ,λ 0( )( )

€ 

θ 1( )

Algorithm for line fitting

• Obtain some start point

• Now compute δ’s using formula above 

• Now compute maximum likelihood estimate of 

•  φ, c come from fitting to weighted points
•  λ comes by counting 
• • Iterate to convergence





The expected values of the deltas at the maximum
(notice the one value close to zero).



Closeup of the fit



Choosing parameters

• What about the noise parameter, and the sigma for the 
line?
• several methods 
• from first principles knowledge of the problem (seldom really possible)
• play around with a few examples and choose (usually quite effective, 

as precise choice doesn’t matter much)
• notice that if kn is large, this says that points very seldom come from 

noise, however far from the line they lie
• usually biases the fit, by pushing outliers into the line
• rule of thumb; its better to fit to the better fitting points, within reason; 

if this is hard to do, then the model could be a problem



Issues with EM

• Local maxima
• can be a serious nuisance in some problems
• no guarantee that we have reached the “right” maximum

• Starting
• k means to cluster the points is often a good idea



Local maximum



which is an excellent fit to some points



and the deltas for this maximum



A dataset that is well fitted by four lines



Result of EM fitting, with one line (or at least, 
one available local maximum).



Result of EM fitting, with two lines (or at least, 
one available local maximum).



Seven lines can produce a rather logical answer
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I x, y,t( ) = I x + vx, y + vy,t +1( )
+noise

Motion segmentation with EM

• Model image pair (or video sequence) as consisting of 
regions of parametric motion
• affine motion is popular

• Now we need to
• determine which pixels belong to which region
• estimate parameters

• Likelihood
• assume

• Straightforward missing variable problem, rest is calculation



Sequence

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html



Three frames from the MPEG “flower garden” sequence

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE



Grey level shows region no. with highest probability

Segments and motion fields associated with them
Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 

Transactions on Image Processing, 1994, c 1994, IEEE



Segments

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html



Alignment (motion compensation)

• For each segment in each frame, know a motion model
• We could add a motion to all pixels in the frame that 

stabilizes the segment



Compensation

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html



Compensation

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html



Compensation

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html





Segment appearance

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html



Segment appearance

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html



Reassembling segments

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html



If we use multiple frames to estimate the appearance
of a segment, we can fill in occlusions; so we can

re-render the sequence with some segments removed.

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE 
Transactions on Image Processing, 1994, c 1994, IEEE



Reassemble w/o tree

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html


